The METcell range of equipment was designed by us to be an easy entry point for scoping separations process development at lab scale, using flat sheet membranes. The range includes the METcell System, for dead-end filtration, and the METcell CrossFlow System, for crossflow filtration.

METcell System

NOTE: The METcell System is sold without the magnetic plate and volumetric cylinder.

The METcell is a stainless steel, high-pressure stirred cell and is suitable for reverse osmosis (RO) and nanofiltration (NF) separations using aqueous and non-aqueous solvents. The MET Gas unit is supplied with the METcell to allow simple connection to a gas cylinder. All components of the assembled system are pressure rated to 69 bar (1000 psi).

NOTE: The METcell System is pressurized with high pressure gas (usually N2). Please ensure that you have an adequate high pressure gas cylinder (200 bar) available and appropriate tubing to connect the cylinder to the METcell System.
Technical Specification

<table>
<thead>
<tr>
<th>Operating Parameters</th>
<th>Membrane Size: 90 mm diameter (area = 63.6 cm²)</th>
<th>Active Membrane Size: 81 mm diameter (area = 51 cm²)</th>
<th>Processable Volume: 250 mL</th>
<th>Hold-up Volume: ~5 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Pressure: 69 barg (1000 psig)</td>
<td>Maximum Temperature: The lower of 50°C or the temperature at which the vapour pressure of the solvent exceeds 1.5 bar absolute.</td>
<td>Material Compatibility: The material is tolerant to all aqueous and organic solvents compatible with 316 stainless steel (SS) and Viton or Perlast.</td>
<td></td>
</tr>
</tbody>
</table>

Connections

- **Permeate Outlet:** 1/8 " diameter 316 SS Tubing
- **Pressure Inlet:** 1/4 " NPT (female)
- **Feed Inlet:** 1/4 " NPT (female)

Wetted Materials

- **Cell body:** 316 Stainless Steel
- **O-rings:** FEP Coated Viton and Perlast
- **Stirrer bar:** PTFE coated magnet with 316 SS support arms

Dimensions

- **Cell Diameter:** 64 mm, flaring to 120 mm
- **Cell Height:** 171 mm (including additional height of reinforced cell top)

MET Gas Unit

<table>
<thead>
<tr>
<th>Gas Unit frame:</th>
<th>Pressure relief spring kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation valve:</td>
<td>Vent valve</td>
</tr>
<tr>
<td>Pressure regulator:</td>
<td>0-69 barg</td>
</tr>
<tr>
<td>Inlet:</td>
<td>1/8 " O.D. tube</td>
</tr>
<tr>
<td>Discharge:</td>
<td>1/4 " O.D. hose (supplied)</td>
</tr>
<tr>
<td>Pressure relief valve:</td>
<td>Set to relieve at 65 barg</td>
</tr>
</tbody>
</table>

Features

The key design features are described below:

1. The **METcell System** is designed to comply with the European Pressure Directive requirements, and the materials of construction are in compliance with FDA current good manufacturing practice (cGMP).
2. Easy-to-use design, with easily removable top to charge feed solution, and easily removable base for membrane replacement.
3. Safe operation up to 69 bar with high pressure mechanical couplings (ASME BPE 1997 compliant) and seals, enabling RO and NF separations to be carried out.
4. Provision of fittings for connection to a pressure source (gas cylinder–recommended).
5. Pre-assembled MET Gas unit including an isolation valve, vent valve, pressure regulator, pressure relief valve, and pressure gauges to allow safe and simple operation of a high pressure system.
6. Connection port for an HPLC pump, allowing charging of solutions into the **METcell** without opening the cell, particularly useful when solutes are oxygen/moisture sensitive or when continuous operation is required, e.g. permeate recycle.
7. A 35mm–wide removable PTFE coated stirrer bar is used to promote excellent mixing down to low liquid volume holdups.
8. All components can be sterilized or autoclaved as part of a cleaning procedure.
9. The METcell can house membrane disks with diameter between 90 and 93 mm. A4 sheets from the PuraMem® and DuraMem® range of solvent nanofiltration membranes are available with various molecular weight cut–off (MWCO) grades (please ask for specifications).

10. Processing times will vary depending on membrane flux. As an indication, with a PuraMem® membrane in methanol, giving a flux of 100 L.m⁻².h⁻¹, a METcell would process 100 ml in approximately 12 minutes.

A comprehensive instruction manual in paper and electronic format is supplied with each METcell System.

The METcell CrossFlow System uses the core components of the METcell System to upgrade the standard dead–end filtration unit into a CrossFlow system. This system can be equipped with up to 6 crossflow cells in series with less than 1 bar pressure drop (1 cP solution viscosity).

NOTE:
(i) – The METcell CrossFlow System is pressurized with high pressure gas (usually N2). Please ensure that you have an adequate high pressure gas cylinder (200 bar) available and appropriate tubing to connect the cylinder to the METcell CrossFlow System.
(ii) – The METcell CrossFlow System may be operated in continuous mode using a recirculation HPLC pump NOT included in this quote – please contact us if this operating mode is required.

METCELL CROSSFLOW SPECIFICATION

More choice – in addition to the dead–end filtration capability provided by the METcell System, the CrossFlow System lets you carry out, for example, crossflow filtrations for concentrating solutions up to 0.8 L or carrying out diafiltrations (adding fresh solvent with an HPLC pump).

Greater flexibility – the membrane area can be easily increased or decreased as required for your tests by changing the number of crossflow filtration cells connected in series. For instance, six 4" crossflow cells (with total area 306 cm²) or six 2.5" crossflow cells (with total area 84 cm²) can be connected in series with a system pressure drop of < 1 barg (based on a solution of 1 cP viscosity).

More tests per experiment – take advantage of having multiple crossflow cells available, so you can test either several discs of one membrane type or several types of membrane simultaneously with the same solution in just one experiment.

More scalable data – obtain results that provide a better prediction for scaling–up, particularly with concentrated or viscous solutions and solutions that generate significant concentration polarisation layers – results from crossflow filtration experiments will provide flux and rejection data more consistent with process–scale membrane elements.

Same high degree of safety – the METcell CrossFlow System, like the METcell System, is designed following EN13445 to fully comply with the requirements of the European Pressure Equipment Directive (97/23/EC) – use of the crossflow kit will maintain the pressure rating and integrity of your METcell.

Same ease of use – like the METcell, the MET crossflow cells provide safe and easy operation up to 69 bar with high pressure mechanical couplings (ASME BPE 1997 compliant) and seals, as well as the flexibility of using swage process connections throughout.

Easy installation – Evonik MET will provide you with a complete set of hoses, fittings, clamps, etc. to get you up and running with crossflow. No annoying delays whilst specifying and waiting for ancillary parts to be delivered – you can be running in crossflow on the same day you receive our kit!
SYSTEM DESCRIPTION

The **METcell** CrossFlow System contains the following:

- High-pressure crossflow filtration cells (316 stainless steel)
- Gear pump (organic solvent compatible)
- **METcell** tank base (316 stainless steel)
- All necessary flexible hoses and fittings

A photograph and schematic of a **METcell** with the CrossFlow System installed are shown overleaf in Figures 1 and 2 respectively. The **METcell** tank base is used to replace the standard **METcell** base and converts the **METcell** into a reservoir for the filtration solution. Like in the **METcell** System, the filtration pressure is provided by gas pressure from a cylinder and is accurately controlled with the MET Gas Unit, as provided with the **METcell** System.

The **METcell** CrossFlow System is particularly suited for reverse osmosis (RO) and nanofiltration (NF) separations, using aqueous or non-aqueous solvents. The **MET** crossflow cells feature a clamped design to allow quick and easy membrane changeover. All components of the assembled CrossFlow System are pressure rated to a minimum operating pressure of 69 barg (1000 psig). The standard **METcell** CrossFlow System is supplied with either:

- 3 x 4” crossflow cells (153 cm² total membrane area), or
- 3 x 2.5” crossflow cells (42 cm² total membrane area).

TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>System</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum/Minimum Working Volume:</td>
<td>800/150 mL</td>
</tr>
<tr>
<td>Maximum/Minimum Working Pressure:</td>
<td>69/5 barg (1000/70 psig)</td>
</tr>
<tr>
<td>Maximum Operating Temperature:</td>
<td>The lower of 50 ºC or the temperature at which the vapour pressure of the solvent exceeds 1.5 barg absolute.</td>
</tr>
<tr>
<td>Hold-Up Volume:</td>
<td>60 mL for two 4” cells, 40 mL for three 2.5” cells</td>
</tr>
<tr>
<td>Pump Delivery Rate:</td>
<td>1.2 L/min</td>
</tr>
<tr>
<td>Pump Motor:</td>
<td>230V, 0.25 kW – ATEX, NEMA and other motor types available on request</td>
</tr>
<tr>
<td>Maximum Filtration Cells in Series:</td>
<td>Six 4” cells or six 2.5” cells (for <1 barg pressure drop with a 1 cP solution)</td>
</tr>
<tr>
<td>Approximate System Dimensions:</td>
<td>For the two 4” or three 2.5” crossflow cells systems, the dimensions are 70 (w) x 70 (d) x 40 (h) cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials of Construction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>METcell and METcell tank base:</td>
<td>316 Stainless Steel</td>
</tr>
<tr>
<td>O-rings:</td>
<td>FEP coated Viton and Perlast</td>
</tr>
<tr>
<td>MET crossflow cells:</td>
<td>316 Stainless Steel</td>
</tr>
<tr>
<td>O-rings:</td>
<td>FEP coated Viton and Perlast</td>
</tr>
<tr>
<td>MET crossflow cell Fittings:</td>
<td>316 Stainless Steel</td>
</tr>
<tr>
<td>Flexible Hoses:</td>
<td>316 Stainless Steel and PTFE</td>
</tr>
<tr>
<td>Pump wetted parts:</td>
<td>316 Stainless Steel, PTFE and Ryton (PPS)</td>
</tr>
</tbody>
</table>
Figure 1 - Assembled METcell CrossFlow System (* - Parts from METcell System)

1 - Gas inlet connected to METcell Top*
2 - Gas inlet connected to METcell Top*
3 - Gas Pressure Unit*
4 - METcell Tank Base
5 - Magnetic Stirrer and Hotplate
(Provided by user)
6 - Permeate Collection (Provided by user)
7 - 2.5” Filtration Cells
8 - Gear Pump

Figure 2 - Schematic for METcell CrossFlow System

Disclaimer
This information and all technical and other advice are based on Evonik’s present knowledge and experience. However, Evonik assumes no liability for such information or advice, including the extent to which such information or advice may relate to third party intellectual property rights. Evonik reserves the right to make any changes to information or advice at any time, without prior or subsequent notice. Evonik disclaims all representations and warranties, whether express or implied, and shall have no liability for, merchantability of the product or its fitness for a particular purpose (even if Evonik is aware of such purpose), or otherwise. Evonik shall not be responsible for consequential, indirect or incidental damages (including loss of profits) of any kind. It is the customer’s sole responsibility to arrange for inspection and testing of all products by qualified experts. Reference to trade names used by other companies is neither a recommendation, nor an endorsement of the corresponding product, and does not imply that similar products could not be used.

Evonik Resource Efficiency GmbH
High Performance Polymers
Paul-Baumann-Straße 1
45772 Marl
Germany

Phone +49 02365 49–4800
evet@evonik.com
www.puramem.com